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Abstract. We discuss the most general form of the leading power suppressed collinear operators in the soft-
collinear effective theory. Such operators appear in the description of power corrections to exclusive heavy
flavor decays into energetic light hadrons. We consistently include the effects of three-particle light-cone
distribution amplitudes and find that their impact could be of phenomenological relevance.

PACS. 12.39.St Factorisation – 12.39.Hg Heavy quark effective theory

1 Introduction

The soft-collinear effective theory (SCET) [1,2,3,4,5,6]
has been proposed as a systematic framework for the study
of processes involving energetic light quarks and gluons.
Possible applications include the decays of heavy hadrons
into light particles in the kinematical regions where the
final products are very energetic, and hard scattering pro-
cesses involving light hadrons, such as deep inelastic scat-
tering and exclusive hadron form factors at large momen-
tum transfer. SCET provides a natural framework for esta-
blishing a systematic expansion in Λ/Q where Λ is the
QCD scale and Q is the typical large energy of the par-
ticles involved. In particular, it provides a convenient tool
to establish factorization theorems and study power cor-
rections.

In the following we use the standard light-cone decom-
position of momenta

pµ =
1
2
nµn̄ · p +

1
2
n̄µn · p + pµ

⊥ ≡ (p+, p−, p⊥) , (1)

where n and n̄ are light-cone vectors satisfying n2 = n̄2 =
0, n · n̄ = 2. In any given process n and n̄ are chosen to
be aligned to the final state collinear momenta.

In the description of heavy meson decays, there are
three relevant kinematical configurations.
a) Soft quarks (qs, hv) and gluons (Aµ

s ) with mo-
menta ps � Λ = Q(λ, λ, λ) (where we defined λ = Λ/Q).
The exchange of soft particles can only be parameterized
and results in the non-factorizable contributions to heavy-
to-heavy and heavy-to-light form factors and the B meson
wave function.
b) Collinear quarks (ξn) and gluons (Aµ

c ) with mo-
menta pc � Q(1, λ2, λ). These modes appear in the de-
scription of the constituents of a fast-moving light meson
and their exchanges have to be parameterized in terms of
the light-cone wave functions of the final state mesons.
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c) Hard collinear quarks (Ξn) and gluons (Aµ
hc)

with momenta phc � Q(1, λ, λ1/2). These modes are ne-
cessary to describe interactions of soft fields with collinear
particles. Since their virtuality is perturbative, they can
be integrated out and result in so-called jet-functions.

It is always possible to completely integrate out hard
collinear particles because in all applications they always
appear as internal modes. Technically, this is realized in a
two step procedure. In the first step an effective theory is
formulated (SCETI) containing soft, collinear and hard-
collinear modes, which is matched into a second step onto
the final effective theory (SCETII) containing only colli-
near and soft modes.

For the purpose of this note, we take the point of
view that problems associated with the integration over
the hard collinear modes at subleading order (see, for in-
stance, the recent analyses presented in [7,8]) have been
cleared and proceed to the analysis of power suppressed
contributions. Once the process is specified, the integra-
tion of the hard collinears gives, order by order in αs, all
the relevant SCET operators (that will involve only soft
and collinear modes). The matrix elements of these ope-
rators between initial and final states fall in two groups:
those factorizable in terms of ”conventional” form factors
and light-cone wave functions, and others that require the
introduction of new non-perturbative objects. In particu-
lar, the light-cone wave functions enter through matrix
elements of SCET operators (involving two quarks and
an infinite number of gluons) between the vacuum and a
meson state.

In Sect. 2 we introduce all the possible SCET collinear
operators that appear at leading and subleading order in
λ. In Sect. 3 we compute their matrix elements in terms
of the usual light cone distribution amplitudes of pseudos-
calar [9,10] and vector [11,12,13] mesons. These operators
are necessary for the SCET analysis of any process invol-
ving energetic light mesons.
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2 Collinear bilinears

The operators to be constructed in this section contain
the collinear quark ξn,p and gluon An,q fields, together
with the collinear covariant derivative iDµ

c = Pµ + gAµ
n.

In order to be able to perform the power counting of the
various contributions at the operator level, it is convenient
to assign a λ scaling to the fields requiring the kinetic
terms to be of order O(1). In this way, one obtains ξn ∼ λ
and Aµ

c ∼ (λ2, 1, λ). In the hybrid formulation of SCET,
one achieves a correct λ expansion by extracting the large
Fourier modes from each field:

φc(x) =
∑

p̃c

e−ip̃cxφc,p̃c(x) (2)

where p̃c = Q(0, 1, λ), are labels and the new field φc,p̃c

is responsible for the soft fluctuations. It is convenient to
introduce a “label” operator Pµ [3] which picks the large
momentum of a collinear field: Pµ ξn,p = ( n̄·p

2 nµ+pµ
⊥) ξn,p.

When acting on a product of several fields, these opera-
tors give the difference between the total label carried by
the fields minus the total label of the complex conjugated
fields. We will also use a special notation which associa-
tes a momentum label index to an arbitrary product of
collinear fields. Our convention is

χn,ω ≡ [W †ξn]ω = [δ(ω − n̄·P)W †ξn] (3)
[
W †iD⊥cW

]
ω

= [δ(ω − n̄·P)W †iD⊥cW ] (4)

where δ(ω − n̄ · P) acts only inside the square brackets.
The collinear operators that we write in the following

can include a nontrivial flavor structure. When required,
this will be denoted by a superscript showing the quark
flavours. Note, finally, that for each operator we can have
the singlet and octet colour structure. We will write ex-
plicitly only the former since the matrix elements of any
octet operator between the vacuum and a meson state va-
nishes.

At leading order in λ there are only three independent
collinear operators, which can be chosen as

JV (ω) = χ̄n,ω1

n̄/

2
χn,ω2 , (5)

JA(ω) = χ̄n,ω1

n̄/

2
γ5χn,ω2 , (6)

J α
T (ω) = χ̄n,ω1

n̄/

2
γα

⊥χn,ω2 , (7)

where γα
⊥ ≡ γα − nαn̄//2 − n̄αn//2 and ω = (ω1, ω2).

At subleading order in λ, we found the following four
chiral-even collinear operators

Vα
1 (ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)†Wn

]

ω1

γα

n̄·P† χn,ω2 + h.c. , (8)

Vα
2 (ω) =

[
ξ̄n

n̄/

2
(iDα

⊥c)
†Wn

]

ω1

1
n̄·P† χn,ω2 + h.c. , (9)

Aα
1 (ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)†Wn

]

ω1

γαγ5

n̄·P† χn,ω2 + h.c. , (10)

Aα
2 (ω) =

[
ξ̄n

n̄/

2
(iDα

⊥c)
†Wn

]

ω1

γ5

n̄·P† χn,ω2 − h.c. , (11)

and the three chiral-odd operators

S(ω) =
[
ξ̄n

n̄/

2
(iD/⊥c)†Wn

]

ω1

1
n̄·P† χn,ω2 + h.c. , (12)

P(ω) =
[
ξ̄n

n̄/

2
(iD/⊥c)†Wn

]

ω1

γ5

n̄·P† χn,ω2 + h.c. , (13)

T αβ(ω) =
[
ξ̄n

n̄/

2
(iDα

⊥c)
†Wn

]

ω1

γβ
⊥

n̄·P† χn,ω2 − h.c. , (14)

together with the corresponding colour octet operators.
These operators are not the most general collinear

gauge invariants at O(λ); in fact, it is necessary to consider
also the following three-particle operators

Vα
3 (ω) = χ̄n,ω1

n̄/

2
[

1
n̄·P W †iDα

⊥W ]ω3 χn,ω2 (15)

Aα
3 (ω) = χ̄n,ω1

n̄/

2
γ5 [

1
n̄·P W †iDα

⊥W ]ω3 χn,ω2 (16)

T αβ
3 (ω) = χ̄n,ω1

n̄/

2
γα

⊥ [
1

n̄·P W †iDβ
⊥W ]ω3 χn,ω2 . (17)

In the definitions of the operators, (8)–(17), we inserted
explicit 1/n̄ · P(†) factors to make them invariant under
type-III reparameterization invariance (i.e. n → nα, n̄ →
n̄/α).

Let us finally discuss the way these operators appear
in explicit calculations. A given QCD operator OQCD is
matched onto SCET operators containing the subleading
collinear bilinears introduced above

OQCD = · · · +
∫

dω1dω2C1(ω1, ω2){· · ·}Vi(ω1, ω2) (18)

+
∫

dω1dω2dω3C2(ω1, ω2, ω3){· · ·}Vi(ω1, ω2, ω3)

where the ellipses {· · ·} denote possible soft fields which
were omitted in writing the SCET operator. The Wilson
coefficients C1,2(ωi) depend on the momentum labels of
the collinear bilinears. After factorization, the matrix ele-
ments of the collinear operators Vi(ωi) between a light
meson and the vacuum lead to non-perturbative func-
tions 〈M(pM )|Vi(ω1, ω2)|0〉 � ϕi(u), where we implemen-
ted momentum conservation ω1 −ω2 = pM by introducing
the momentum fraction u by (ω1, ω2) = (u, −ū)n̄ · pM ,
with u ∈ [0, 1]. The charge-conjugation transformation
properties of the collinear operators Vi(ω1, ω2), taken to-
gether with the C quantum number of the state |M(pM )〉,
fix the symmetry property of matrix elements under the
substitution u → ū. For example, taking C = −1 as ap-
propriate for the ρ meson, one has

〈ρ(p, η)|Veven(odd)
i (ω1, ω2)|0〉 ∼ ϕodd(even)

ρ (u) , (19)

such that only the odd (even) part of the corresponding
Wilson coefficient C(ω1, ω2) will give a non-vanishing con-
tribution to the given matrix element of (18).
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3 Matrix elements

In order to extract the matrix elements of the operators
defined in the previous section, it is necessary project the
five independent QCD currents onto SCETII. We refer
to [14] for a detailed description of this procedure. Here
we present only the projection of the vector current:

q̄(x)γµ[x, y]q(y) =
∫

D2ω

{
JV (ω)nµ + Vµ

1 (ω) +
inµ

2

[

(ω1 x⊥ − ω2 y⊥) · V2(ω) + (ω1 x⊥ + ω2 y⊥) · Ṽ2(ω)
]}

−1
2

nµn · z

∫ 1

0
dt (tx⊥α + t̄y⊥α)

∫
D3ω ω2

3 Vα
3 (ω) , (20)

where [x, y] is a gauge covariant Wilson line connecting
q(x) and q(y) along a line. Using the explicit expressions
for the vacuum-to-meson matrix elements of the QCD cur-
rents given in [9,10,11,12,13] we can extract the corre-
sponding matrix elements for the SCET operators. Due
to lack of space we present here only the results for a
transverse polarized vector meson with momentum p and
polarization η⊥. The only non vanishing matrix elements
are:

〈V |J µ
T |0〉 =

1
4

fT
V ηµ∗

⊥ n̄·p φ⊥(u) , (21)

〈V |Vµ
1 |0〉 = fV mV ηµ∗

⊥ g
(v)
⊥ (u) , (22)

〈V |Vµ
2 |0〉 = −1

2
fV mV ηµ∗

⊥ ×
[

ū − u

uū
F (u) − G

(v)
V x(u)
u

−
G

(v)
V y(u)
ū

]
, (23)

〈V |Aµ
1 |0〉 =

i

4
fV mV εµν

⊥ η∗
⊥ν g

(a)
⊥

′
(u) , (24)

〈V |Aµ
2 |0〉 =

i

2
fV mV εµν

⊥ η∗
⊥ν ×

[
ū − u

uū

g
(a)
⊥ (u)

4
− G

(a)
V x(u)
u

−
G

(a)
V y(u)
ū

]
,(25)

〈V |Vµ
3 |0〉 =

1
2
fV mV ηµ∗

⊥
V(α)
α2

3
, (26)

〈V |Aµ
3 |0〉 = − i

2
fV mV εµν

⊥ η∗
⊥ν

A(α)
α2

3
, (27)

where

G
(v,a)
V x (u) =

d
du

∫ u

0
dα1

∫ ū

0
dα2

u − α1

α2
3

(V, A)(α) , (28)

G
(v,a)
V y (u) =

d
du

∫ u

0
dα1

∫ ū

0
dα2

ū − α2

α2
3

(V, A)(α) (29)

and the various functions are defined in [9,10,11,12,
13]. Note that at leading order in ΛQCD/mb the ma-
trix elements of the vector and axial structures vanish,
〈V |J µ

V,A|0〉 = 0 and only the tensor operator J µ
T has a

non vanishing matrix element.

4 Reparameterization invariance

The soft-collinear effective theory has an additional sym-
metry, related to the Lorentz invariance of the full theory,
which was explicitly broken by defining the effective
theory in terms of the arbitrary light-cone vectors nµ and
n̄µ. This symmetry manifests itself as an invariance under
small changes in the light-cone vectors nµ and n̄µ, and is
usually called reparameterization invariance (RPI). This
invariance can be used to constrain the Wilson coefficients
of the SCET operators introduced in Sect. 2.

Let us first point out that RPI of type III (invariance
under rescaling of n and n̄) implies that the SCET ex-
pansion must contain at least on additional vector in ad-
dition to nµ and n̄µ [14]. This vector can be the heavy
quark velocity vµ or the space-time vector zµ describing
the non-locality of a T-product.

From the analysis presented in [14], it follows that the
coefficients of the O(λ) SCET operators appearing in the
expansion of any QCD scalar current of the form S(z)
are completely determined in terms of the leading ones.
The expansion of vector operators V µ(z) is much more
complicate and the coefficients of the O(λ) operators are,
nevertheless, severely constrained. These constraints are
of no use for the case of the non-local vector current, (20),
because the matching can be worked out using the equa-
tions of motion of QCD and is exact at all orders. On the
other hand, in situations in which the coefficients have to
be computed order by order in perturbation theory, RPI
constraints provide a powerful tool to check and simplify
the calculation.
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